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Pacific Northwest National Laboratory, Richland, Washington, USA; kCentre for Atmospheric Science, SEAES, University of Manchester,
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ABSTRACT
Detection of bioaerosols, or primary biological aerosol particles (PBAPs), has become increas-
ingly important for a wide variety of research communities and scientific questions. In par-
ticular, real-time (RT) techniques for autonomous, online detection and characterization of
PBAP properties in both outdoor and indoor environments are becoming more common-
place and have opened avenues of research. With advances in technology, however, come
challenges to standardize practices so that results are both reliable and comparable across
technologies and users. Here, we present a critical review of major RT instrument classes
that have been applied to PBAP research, especially with respect to environmental science,
allergy monitoring, agriculture, public health, and national security. Eight major classes of RT
techniques are covered, including the following: (i) fluorescence spectroscopy, (ii) elastic
scattering, microscopy, and holography, (iii) Raman spectroscopy, (iv) mass spectrometry, (v)
breakdown spectroscopy, (vi) remote sensing, (vii) microfluidic techniques, and (viii) paired
aqueous techniques. For each class of technology we present technical limitations, miscon-
ceptions, and pitfalls, and also summarize best practices for operation, analysis, and report-
ing. The final section of the article presents pressing scientific questions and grand
challenges for RT sensing of PBAP as well as recommendations for future work to encourage
high-quality results and increased cross-community collaboration.
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1. Introduction

The investigation of atmospheric aerosols of biological
origin arose in the mid-nineteenth century due to
speculations on the origin of diseases afflicting
humans and crops (Carnelley, Haldane, and Anderson
1887; Pasteur 1862; Vallery-Radot and Hamilton
1885). Many other applications of aerobiology fol-
lowed within the first half of the twentieth century,
including population biology, aero-allergology, and
the detection of biowarfare agents (Gregory 1961;
Stackman et al. 1942). Today, research regarding the
sources, properties, concentrations, and diversity of
bioaerosol is motivated by increasingly diverse

questions and needs (e.g., Burge 1990; Cox and
Wathes 1995; Cox et al. 2019; D’Amato et al. 2007;
Fr€ohlich-Nowoisky et al. 2016; Morris et al. 2014a;
N�u~nez et al. 2016; �Santl-Temkiv et al. 2019; Shiraiwa
et al. 2017; Sorensen et al. 2019; Womack, Bohannan,
and Green 2010). Many applications use the same
broad principles of detection, however. The diversity
of application means that scientists, engineers, and
health practitioners who study and monitor primary
biological aerosol particles (PBAPs) are spread widely
across relatively unrelated communities with separate
networks of collaboration. One motivation for the
present journal special issue entitled “Bioaerosol
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Research: Methods, Challenges, and Perspectives” is to
provide broad recommendations to these diverse
communities.

Discussion is complicated by the use of variable
nomenclature across research communities. Here, we
use the terms bioaerosol and PBAP interchangeably,
defined as in Despr�es et al. (2012), to describe “solid
airborne particles derived from biological organisms,
including microorganisms and fragments of bio-
logical materials such as plant debris and ani-
mal dander.”

Identification of PBAP, e.g., to the genus and spe-
cies level for many infectious microorganisms, or the
genus level for some allergenic fungi and bacteria, is
required for many applications (Table 1). Thus, many
measurement methods involve collection of particles
followed, e.g., by visual identification of cultured
microbes or of individual particles under a microscope
(Mandrioli et al. 1998), antigen/antibody assay, or
polymerase chain reaction. Such manual analysis can
be subjective, costly, and time-intensive, which causes
delays in data availability, limits the breadth of appli-
cation, and can result in poor subsampling of meas-
urements. As a result, samplers capable of
autonomous and continuous real-time (RT) or near-
RT analysis have become increasingly common. The
terms online and offline are also used here to refer to
RT and manual methods, respectively. In some cases,
a distinction is necessary between true direct-reading
RT sensors that sample particles and then collect, ana-
lyze, and report interpreted data without requiring
human input, and sensors that autonomously sample
particles and then collect and analyze data in RT, but
which require some level of manual human interpret-
ation and analysis at a later stage. The timescale of
automatic analysis and reporting leads to further dis-
tinction between sensors. In some cases, sampling,
analysis, and reporting can be achieved within seconds
or minutes, and in other cases, this requires integra-
tion times of several hours.

Development of RT analysis of PBAP was driven
largely by the need for early warning of airborne
threats to public health or national defense, including
acts of bioterrorism, for forecasting of aeroallergens,
and for climate research (e.g., cloud glaciation).
Thus, a wide variety of RT techniques have been
developed, as reviewed thoroughly elsewhere (e.g.,
Ballard, Brown, and Ozcan 2018; Caruana 2011;
Despr�es et al. 2012; Griffiths and Decosemo 1994;
Ho 2002; Holt and Bennett 2014; Huffman and
Santarpia 2017; Lim et al. 2005a; Spurny 1994; Xu
et al. 2011). RT detection presents a host of technical

and scientific challenges that may not be obvious to
a data or instrument user. Further, no RT analysis
can unambiguously provide information about all
important aspects of PBAP, including the following:
particle size, morphology, species identification, vital-
ity or viability state, and quantitative concentration.
Most techniques discussed here utilize physical or
chemical properties to infer the biological nature of
detected particles. All RT techniques thus apply key
analytical assumptions that must be understood,
challenged, and adapted to maximize the desired
information.

RT instrumentation has been routinely applied with
respect to several broad categories of objectives for
studying PBAP spread across a variety of basic and
applied research fields. Motivations for this research are
discussed in more depth within other articles in the spe-
cial issue (e.g., Cox et al. 2019; �Santl-Temkiv et al.
2019), but are presented briefly here and in Table 1.
Four largely separated categories of PBAP are summar-
ized below as targets for RT detection, each with appli-
cation in multiple scientific disciplines.

i. Pathogenic aerosols (e.g., viruses, bacteria, fungi)
that can infect or spread toxins to humans.
Monitoring is required to protect public health
and for national security against disease vectors
spread naturally or through nefarious intent.
Applications can include continuous monitoring
in urban areas, within occupied buildings or
public transportation, and with respect to
defense-related activities (Douwes et al. 2003;
Laumbach and Kipen 2005; Lim et al. 2005b). In
this case, the need for taxonomic specificity is
high in order to filter out false positives from
noninfectious PBAPs.

ii. Pathogenic aerosols that can infect or otherwise
damage crops and livestock. Primary motivations
include reducing the spread of disease and maxi-
mizing crop yield and profit (Aylor et al. 2011;
Douglas et al. 2018; Lis, Mainelis, and G�orny
2008). A related motivation is to observe spread
of disease through natural ecosystems
(e.g., forests).

iii. Pollen and other allergen-containing aerosols,
including fungal spores, pet dander, small insects,
e.g., dust mites, and their fragments, that can
impact human health. Applications include mon-
itoring networks that disseminate information to
the public (Buters et al. 2018; Greiner et al.
2011), monitoring pollination of crops, and the
natural migration of organisms and biodiversity
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in a changing climate (Beggs 2004; D’Amato
et al. 2016; Hamaoui-Laguel et al. 2015; Ozanne
et al. 2003). In some cases, the need exists for
specific taxonomic identification, and in other
cases, only generalized information is required.

iv. PBAP categorized more broadly, e.g., into taxa
such as pollen, fungal spores, bacteria, and other
PBAP classes. In some cases, the need for taxo-
nomic specificity is much lower, e.g., to under-
stand how certain PBAP types affect cloud
physical properties or to investigate PBAP chem-
istry (Georgakopoulos et al. 2009; P€oschl and
Shiraiwa 2015).

A key purpose of this manuscript is to describe
techniques that address these objectives and provide
critiques, including recommendations for operation
and analysis. Each major section discusses current
technological limitations and future needs to be
addressed by the research community. This review
and perspective article will focus specifically on the
most commonly applied real-time techniques for bio-
aerosol analysis, with emphasis on civilian, commer-
cially available techniques. Acronym definitions are
listed in the nomenclature at end of text.

2. Real-time techniques

2.1. Fluorescence spectroscopy

2.1.1. Overview
Among the most common RT technique for PBAP
detection is the use of laser- (or light)-induced fluor-
escence (LIF). This technique typically uses mono-
chromatic light (continuous or pulsed) to investigate
the fluorescent properties of individual particles flow-
ing in air through the instrument. The resulting fluor-
escent signals of sufficient intensity are then broadly
interpreted according to general assumptions made
about the molecular source of fluorescence in particu-
lar bands. Autofluorescence (intrinsic fluorescence
without tags or dyes) from certain biomolecules, espe-
cially those containing substituted aromatic rings (i.e.,
riboflavin and several amino acids), can indicate the
presence of biological material, whereas the intensity
from most non-biological aerosol is quite low (e.g.,
P€ohlker, Huffman, and P€oschl 2012 and references
therein). Wavebands of excitation and emission are
frequently chosen to coincide, e.g., with the peaks of
tryptophan and NADH emission, though many other
fluorophores contribute to the signature of atmos-
pheric PBAPs. As discussed in more detail below, LIF
detection generally allows discernment of biological

from non-biological aerosol and possibly more
detailed differentiation, depending on instrumental
capabilities.

Fluorescence spectra from individual molecules are
broad, by nature of the distribution of photon ener-
gies following electron relaxation within excited mole-
cules. Bioparticles can vary by 104 in diameter (e.g.,
10 nm virus – 100mm pollen) and thus 1012 in vol-
ume. Emission spectra from PBAP typically have con-
tributions from huge numbers of molecules, including
complex mixtures of fluorophores. As a result, related
individual classes of PBAP (e.g., all bacteria) can have
similar LIF spectra, making species-level identification
challenging from fluorescence alone. Furthermore,
fluorescence is subject to interferences from non-bio-
logical aerosols that contain aromatic hydrocarbons
(e.g., industrial chemicals and engine exhausts).
Laboratory studies have shown that LIF spectra of
PBAP can be strongly influenced by growth condi-
tions or agglomeration with leftover growth media or
other materials (Pan et al. 2014b; Sivaprakasam et al.
2011), or by exposure to ultraviolet light and ozone
(Pan et al. 2014a). Using multiple excitation wave-
lengths can improve discrimination and reduce
false positives.

In earlier systems, excitation was generally per-
formed by relatively high-powered lasers. More
recently, the use of smaller diode-pumped lasers, flash
lamps, and light-emitting-diodes (LEDs) as light sour-
ces has greatly reduced the system size, weight, and
power consumption (Cabalo et al. 2008; Davitt et al.
2005; Pan et al. 2003a). Fluorescence spectra are also
measured by several additional instrument types dis-
cussed below, but these are not presented in this sec-
tion because they also rely heavily on other optical
information for particle characterization.

A number of useful summaries and comprehensive
reviews discuss the background spectroscopy of LIF as
applied to bioaerosols (Ammor 2007; Campbell et al.
2005; Hill et al. 2014; Hill et al. 2009; Hill et al. 2013;
Hill et al. 1999; Jeys et al. 2007; Kopczynski et al.
2005; P€ohlker et al. 2013; 2012; Wlodarski et al. 2006)
and the instrumentation used in this subfield
(Caruana 2011; Fennelly et al. 2017; Huffman and
Santarpia 2017).

2.1.2. LIF for early warning of human pathogens
National security concerns over biowarfare agents
(e.g., anthrax, plague, or tularemia) have driven the
development of RT bioaerosol detection by fluores-
cence. Since fluorescence alone cannot differentiate
between harmful and benign bioaerosols, these RT
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methods are referred to as frontends or triggers and
are used to determine when to turn on more specific
optical detection techniques or to employ further
analyses for the identification of specific agents (e.g.,
using antibodies or nucleic acid sequences).

Initial measurements by the U.S. Army Research
Laboratory (ARL) of fluorescence of individual par-
ticles transiting a 488-nm laser beam indicated that
single-particle fluorescence from Bacillus anthracis
was far larger than that from a common mineral dust
(kaolin) and other particles (Pinnick et al. 1995).
Subsequently, the system was used to measure fluores-
cence spectra of laboratory-generated particles (Hill
et al. 1999; Pan et al. 2001; Pan et al. 2003b; Pan et al.
2010; Pan et al. 1999) and atmospheric aerosol (Pan
et al. 2007; Pinnick et al. 2004). The Canadian
Defense Research Establishment teamed with TSI, Inc.
(Shoreview, MN, USA) to develop the first commer-
cially available fluorescence-based RT bioaerosol
detector, the UV-APS or FLAPS (Agranovski et al.
2003b; Hairston, Ho, and Quant 1997; Ho 2002; Ho,
Spence, and Hairston 1999). MIT Lincoln Laboratory
(LL, Lexington, MA, USA) developed a 266-nm-based
fluorescence and elastic scattering detector, the
Biological-Agent Warning Sensor, BAWS
(Primmerman 2000). The BAWS sensor was employed
beginning in the year 2000 as the trigger on the U.S.
Department of Defense deployed Joint Biological
Point Detection System, JBPDS (Grometstein 2011;
Lynch et al. 2005). In parallel, the Naval Research
Laboratory (NRL) demonstrated an elastic scattering-
cued fluorescence sensor at 266 nm (Eversole et al.
1999; Seaver et al. 1999). A collaboration between LL,
NRL, and Edgewood Chemical and Biological Center
led to an improved breadboard capability under the
Rapid Agent Aerosol Detector (RAAD) program initi-
ated in 2002 (DeFreez 2009; Jeys et al. 2007) that
employed an 808-nm structured beam as the cueing
laser (Herzog et al. 2007), 355-nm polarized elastic
scattering, dual fluorescence excitation at 266 and
355 nm (Sivaprakasam et al., 2004) that triggered
laser-induced breakdown spectroscopy (Hybl et al.
2006) at suspect events. The RAAD sensor was slated
in 2017 to be the detector under the Enhanced
Maritime Biological Detection (EMBD) program. A
team from the University of Hertfordshire and U.K.
Defense Ministry developed a fluorescence and light-
scattering instrument for bioparticles, later commer-
cialized as the WIBS (Foot et al. 2008; Kaye et al.
2000; Kaye et al. 2005).

Detection of fluorescence of individual aerosols
with two sequential excitations and broad band

emission channels (Kaye et al. 2005; Sivaprakasam
et al. 2004) has been shown to better discriminate
against diesel soot, a common interferent
(Sivaprakasam et al. 2011). A dual excitation system
with 32-channel spectral resolution provides more
specific bioaerosol classification (Huang et al. 2008;
Pan et al. 2010). Suspect particles, identified based on
fluorescence, can be sorted and collected by an air
puffer deflection technique (Pan et al. 2001; Pan et al.
2004) or an electrostatic charging technique
(Sivaprakasam et al. 2009) for further analysis.

2.1.3. Further commercial development of 1-3 chan-
nel LIF

Here, we discuss a few selected commercial LIF
instruments, the evaluation of which can apply to
other LIF technologies.

2.1.3.1. UV-APS. The Ultraviolet Aerodynamic
Particle Sizer (UV-APS; TSI, Shoreview, MN, USA)
was marketed widely and, though discontinued, is
still used for research purposes. The UV-APS has
been applied to both indoor (Bhangar et al. 2016;
Kanaani et al. 2008; Pereira et al. 2017) and outdoor
PBAP analyses (Hallar et al. 2011; Huffman et al.
2013; P€oschl et al. 2010; Schumacher et al. 2013;
Valsan et al. 2016; Wei et al. 2016) as well as to
investigate airborne microorganism viability and
dynamics (Agranovski et al. 2003a; Agranovski et al.
2004; Pan et al. 2014a; Saari et al. 2015). Pulsed 355-
nm light from a Nd:YAG laser excites fluorescence
and the integrated intensity from 420 to 575 nm is
measured (Brosseau et al. 2000; Hairston, Ho, and
Quant 1997). In contrast to most other LIF instru-
ments, the commercial UV-APS (Model 3314) does
not report single-particle information, but rather
summed totals over an user-defined time period (sec-
onds to minutes). The detector response of the fluor-
escence background is also not routinely monitored
or corrected for, which could significantly influence
the fluorescence intensity and overall interpretation
of the data.

Particle size is measured as the aerodynamic diam-
eter (0.7–20 mm), and the size resolution is generally
higher than for optical sizing instruments. Because the
UV-APS reports fluorescence in a single emission
band, overall particle discrimination is generally
poorer than for multichannel instruments and par-
ticles may be more likely to escape detection, depend-
ing on the lowest channel of fluorescence intensity
used for analysis (Healy et al. 2014; Huffman et al.
2012). Data from ambient aerosol measurements have
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shown that the UV-APS number concentration scales
well with the FL3 channel of the WIBS, as discussed
below (Gosselin et al. 2016; Healy et al. 2014).

2.1.3.2. Wideband Integrated Bioaerosol Spectrometer
(WIBS). The Wideband Integrated Bioaerosol
Spectrometer (WIBS) is a widely used, commercial,
three-channel LIF spectrometer developed by the
University of Hertfordshire (UH), now licensed to and
manufactured by Droplet Measurement Technologies
(DMT; Longmont, Colorado). Several noncommercial
WIBS versions were produced (i.e., revisions 3 and 4;
UH) with slightly different optical and electronic con-
figurations, and DMT has manufactured two commer-
cial models (4A and NEO). Detailed technical
descriptions can be found elsewhere (Foot et al. 2008;
Gabey et al. 2010; Kaye et al. 2007, Kaye et al. 2005;
K€onemann et al. 2019; Perring et al. 2015). All WIBS
versions are generally similar: Elastic scatter from a
635-nm laser is used to determine particle size and
asymmetry, two xenon flashlamps are filtered to pro-
duce narrow excitation wavebands centered at 280 and
370 nm, and two wideband photomultiplier detection
channels (�310–400 nm and �420–650 nm) provide
three channels of fluorescence detection.

Early publications analyzing data from WIBS or
similar sensors made a binary distinction between
non-fluorescent and fluorescent aerosol with thresh-
olds determined by fluorescence signal in the absence
of particles (“forced trigger” mode) (Gabey et al.
2010). More recently, a typing scheme has been
applied, which classifies particles into eight categories
based on which channels display fluorescent signal
(Perring et al. 2015). Hernandez et al. (2016) and
Savage et al. (2017) used this method to characterize
certain PBAP of interest, showing pollen, bacteria,
and fungal spores to have distinct patterns; however,
repeatability between instruments was relatively poor.

The Instascope (DetectionTek; Boulder, Colorado,
USA), used commercially to monitor mold and fungal
spores inside homes, is very similar to the WIBS-4A.
Although the two descend from the same design, the
Instascope has some technical differences (e.g., lacks
asymmetry measurement and has a different physical
configuration) and is primarily marketed to
non-scientists.

2.1.4. Commercial multichannel LIF
2.1.4.1. Multiparameter Bioaerosol Sensor (MBS).
The Multiparameter Bioaerosol Sensor (MBS, UH) is
similar in design to the WIBS, but features enhanced
spectral resolution and morphological information

(Ruske et al. 2017). A xenon flashlamp provides exci-
tation at a single wavelength (280 nm), and the fluor-
escence signal is split with a grating and detected over
eight channels (310–638 nm) by a multichannel photo-
multiplier. A dual CMOS linear array records the spa-
tial patterns of elastic scattering to provide
morphological information. Work is ongoing to
improve real-time statistical analysis of the scattering
patterns (e.g., mirror symmetry and peak-to-mean
intensity) and to aid discrimination between particles
with similar fluorescent spectra.

2.1.4.2. Spectral Intensity Bioaerosol Spectrometer
(SIBS). The Spectral Intensity Bioaerosol Spectrometer
(SIBS, DMT) is a commercial LIF instrument built on
the optical block of the WIBS, modified to disperse
emission spectra into 16 channels (300–720 nm) fol-
lowing excitation pulses from filtered xenon flash-
lamps centered at 285 and 370 nm (K€onemann et al.
2019). The instrument has been described in detail,
characterized in the laboratory (K€onemann et al.
2019), and recently applied to ambient aerosol
(K€onemann et al. 2018a; Nasir et al. 2018). The SIBS
provides significantly increased spectral resolution
relative to WIBS units and may be able to discrimin-
ate between aerosol types with higher certainty once
appropriate data analysis techniques (e.g., clustering
or machine learning) are applied. Technical challenges
and benefits are discussed by K€onemann et al. (2019).

2.1.4.3. Rapid-E. The PA-300 (Plair SA, Geneva,
Switzerland), described by Kiselev, Bonacina, and
Wolf (2011; 2013), can provide real-time observations
of total pollen and grass pollen concentrations for
particles 0.5–100mm (Crouzy et al. 2016). An updated
model called the Rapid-E can be used to identify fur-
ther pollen taxa (�Saulien_e et al. 2019) and consists of
a blue laser (400 nm) used to produce time-resolved
scattering patterns across 24 detectors at different
angles (þ/–45� forward to backward). A second UV
laser (337 nm) excites a fluorescence signal, which is
measured across 32 channels with a spectral range of
350–800 nm and eight sequential acquisitions (0.5-ms
interval). The fluorescence lifetime is recorded for
four bands at nanosecond resolution.

Results from the Rapid-E were presented and com-
pared to manual Hirst-type analyses (Hirst 1952) by
�Saulien _e et al. (2019). They found that the instrument
has the potential to identify pollen morphotypes in
RT; however, they also highlighted a number of
remaining issues, including the need to generalize
algorithms across instruments and to include more
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pollen taxa. Plair also manufactures a Rapid-C focused
on detection of viruses, bacteria, and fungi which is
applied to bio-contamination in industrial processes
and clean rooms.

2.1.5. Particle differentiation and fluorescence ana-
lysis techniques

The objective of particle analysis by fluorescence tech-
niques is frequently to separate PBAPs from non-
PBAPs, with the addition of broad taxonomic detail
when possible. Detection of aerosols is typically per-
formed automatically in RT, whereas analysis is usu-
ally performed offline, though simplified data
processing is possible in RT. Instruments that use
fluorescence alone can be limited in their ability to
differentiate between aerosol classes. Species-level dis-
crimination of fungal spores or bacteria is not pos-
sible, and sensitivity is limited for individual viral
particles that are tens of nm in size. LIF instruments
are frequently applied with the goal, e.g., to broadly
understand atmospheric PBAP trends without fine-
level classification or to monitor concentrations of a
specific list of pollen species. Fluorescence-based tech-
niques are also frequently paired with other RT or off-
line sensors to increase the level of specificity that can
be achieved.

LIF bioaerosol data are generally analyzed in one of
a few ways: (i) counting particles above a given
threshold as fluorescent, and, often, interpreting this
as a lower limit proxy for PBAP (e.g., Gabey et al.
2010; Huffman, Treutlein, and P€oschl 2010), (ii)
assigning types based on response in different fluores-
cent channels (Perring et al. 2015; Wright et al. 2014),
or (iii) using classification algorithms utilizing
resolved emission spectra from multichannel instru-
ments (K€onemann et al. 2019; Ruske et al. 2017). The
uncertainties associated with each strategy can dra-
matically affect interpretation of data, as dis-
cussed below.

For methods (i) and (ii) above, or to reduce input
particle number for (iii), a first step is to determine if
a particle is fluorescent in a given channel. For
example, for WIBS data the forced trigger back-
groundþn standard deviations (r) is commonly used
to determine a threshold. Historically 3r has been
used (Gabey et al. 2010), but this relatively low
threshold may allow detection of a fraction of some
classes of non-biological particles (e.g., certain mineral
dusts and soot) with significant frequency, overesti-
mating the true PBAP concentration (Crawford et al.
2017, 2016; Toprak and Schnaiter 2013). Laboratory
characterizations by Savage et al. (2017) demonstrate

that a 9r threshold for WIBS data more effectively
excludes many interferents without significantly
impacting PBAP concentration. Some interferents
(e.g., diesel soot and textile fibers) remain, however,
even using a higher threshold. Another approach to
determining the fluorescent threshold is to fit a
Gaussian-constrained probability distribution to the
ambient data (Perring et al. 2015). A variety of other
threshold strategies have been explored with respect
to WIBS data (Gabey et al. 2011, 2010; Savage et al.
2017; Toprak and Schnaiter 2013; Wright et al. 2014).
The choice of threshold depends on the dataset; sam-
pling locations with low expected interferent concen-
trations will be more tolerant of lower thresholds.
However, computational demands of processing large
datasets at lower thresholds using methods such as
cluster analysis are high due to the inclusion of a
vastly dominant interferent population.

Unsupervised and/or supervised classification tech-
niques can identify distinct bioaerosol populations
from measured spectra, size, and morphology more
accurately than manual analyses. Methods applied to
LIF data include k-means, random forest, hierarchical
agglomerative clustering (HAC), convolutional neural
networks, support vector machines, and several
machine learning and artificial-intelligence-based
strategies (Crawford et al. 2015; Pan, Huang, and
Chang 2012; Pinnick et al. 2004; Robinson et al. 2013;
Ruske et al. 2017; Swanson and Huffman 2018, 2019).
Validation studies of classification techniques have
shown high sensitivity to data preparation and algo-
rithm choice. As such users are encouraged to follow
published guidelines (Ruske et al. 2017; Ruske et al.
2018; Savage and Huffman 2018).

Supervised methods can be used to classify each
detected particle into a distinct type, but performance
depends on the applicability of the data used to train
model parameters. Once trained, supervised methods
can achieve significantly faster processing times and
higher accuracy. The quality and variety of data used
for training are key, however, as are the organism
growth conditions and aerosolization methods. Many
relevant PBAP cannot be appropriately aerosolized for
laboratory study (e.g., wet-discharge fungal spores),
and standard aerosolization methods can damage or
kill bacterial cells (Heidelberg et al. 1997). Forde et al.
(2019) recently highlighted remaining challenges in
the use of laboratory data for training and validation
of analysis methods. The co-benefits of unsupervised
and supervised methods suggest that the choice of
one or a combination depends on the required speed
of classification and quality of training data used. The
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development of efficient and accessible open-source
libraries allows users to more easily move from, e.g.,
unsupervised methods to neural networks or
advanced supervised methods. However, the high dis-
criminatory power of supervised methods often comes
with the risk of overtraining algorithms due to the
recognition of unwanted features. Access to raw data
is essential to allow meaningful quality control with
respect to supervised methods of analysis and for
comparisons between devices. If possible, determinis-
tic approaches should be used concurrently with black
box machine learning techniques (e.g., deep
neural networks).

2.1.6. Fluorescence calibration methods
The interpretation of bioaerosol LIF usually assumes
that instrumental response is repeatable in time and
across instrumental platforms. Fluorescence intensity,
however, varies with, e.g., instrument sensitivity, exci-
tation wavelength, and particle size. Therefore, there
is a need to establish standards for aerosol fluores-
cence intensity and comparison of instrument
response. Performance can degrade for various rea-
sons including detector drift, reduction of excitation
irradiance, temperature dependence of the laser, or
accumulation of particulates on optics. An established
calibration protocol would greatly reduce the logistical
support burden for fielded instruments, while simul-
taneously increasing reliability and confidence of
measurements. Another common need is for calibra-
tion aerosols at specified concentrations to ensure
repeatability of instrument counting response.

In some cases, instruments are used with relative
fluorescence intensity calibration or are calibrated
using unreliable standards. One example is using
freshly grown fungal spores or bacteria, but this
method suffers from the high variability of micro-
organism spectral properties based on age, size,
physiological health, and growth conditions, as well as
the fact that growth media can perturb the fluores-
cence response. In other cases, standard polystyrene
microspheres doped with fluorescent dyes are used for
both sizing and fluorescence intensity calibration.
While these particles produce consistent sizing results,
the fluorescent dyes degrade over time and can be
inconsistent from batch-to-batch. Further, surfactants,
included in varying concentrations, can have intense
fluorescent properties that influence LIF results
(K€onemann et al. 2018b). One example of a standard
particle that has been used for fluorescence calibration
is a polymer bead coated only on the surface with
blue dye (B0200; Thermo Fisher Scientific, Inc.,

Sunnyvale, CA, USA), which can exhibit relative sta-
bility (<20% fluorescence variability over a year) once
surfactants are washed off before aerosolization
(unpublished data, author Sivaprakasam).

One method developed for fluorescence intensity
verification can also be used to validate particle con-
centration and establish traceability (Li et al. 2014).
Particles size selected by a differential mobility ana-
lyzer (DMA) is sampled by an optical particle counter,
collected on a wafer, and scanned for number count
verification (Linnell et al. 2016). A prototype instru-
ment developed by MIT LL and NRL is used to
deliver controlled concentrations of monodispersed
aerosol to calibrate LIF sensors and is commercially
available (C-CAG, L2 defense, Edgewood, MD, USA).
An alternative method for fluorescence intensity cali-
bration also uses a DMA to produce monodispersed
aerosol in order to determine a relationship between
fluorophore mass and detector intensity (Robinson
et al. 2017). Such instrumentation is unlikely to be
available to many LIF users, however. While Robinson
et al. (2017) suggested that instrument performance
could be checked using polydisperse distributions, this
requires using the instrument sizing, which may intro-
duce errors; thus, primary calibrations are still recom-
mended. It is also not clear whether the calibrations
detailed in Robinson et al. (2017) are suitable for
higher-resolution spectrometers or whether the sensi-
tivity changes with environmental conditions (e.g.,
relative humidity after drying).

The current lack of a gold standard fluorescent
calibration and standardized operational parameters
within the LIF community is among the most signifi-
cant barriers to directly comparing results and provid-
ing reliable sub-classifications. The ideal calibration
standard would (i) be easily aerosolized, (ii) have con-
sistent fluorescent properties (i.e., intensity and wave-
length of emission band), (iii) minimize the need for
expensive equipment, (iv) not involve complex chem-
ical, biological, or physical laboratory requirements,
(v) be stable over weeks to years at room temperature,
and (vi) be non-hazardous for use or transport. It is
unlikely that individual calibration standards would be
suitable for all excitation wavelengths and all emission
ranges, but having suitable standards for several
ranges would be acceptable. It is also important for
fluorescence to be calibrated and reported as a func-
tion of particle size, given the strong relationship
between fluorescence intensity and particle size (Hill
et al. 2001; Hill et al. 2015; Savage et al. 2017;
Sivaprakasam et al. 2011).
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2.1.7. Perspectives and general challenges for fluor-
escence analysis

2.1.7.1. Instrument design and characterization.
K€onemann et al. (2019) demonstrated significant per-
formance differences between LIF instruments due to
variations in flashlamp irradiance (e.g., �220% differ-
ence between two lamp units observed). Electronic gain
applied to sources such as xenon lamps or power asso-
ciated with laser or LED units determines the photon
flux that promotes fluorescence; thus, decreases in pho-
ton flux reduce fluorescence signals. Because fluores-
cence signals are frequently not normalized to source
intensity for commercial instruments, perturbations or
drift in irradiation power density can significantly influ-
ence data interpretation. Further, detector sensitivity,
whether altered through degradation or electronic gain,
determines the ability to detect emitted light (e.g.,
Robinson et al. 2017). These factors often go unmoni-
tored and can change over time. The lack of protocols
for setting or reporting instrument gains complicates
comparisons between units (e.g., Hernandez et al. 2016)
and poses a significant barrier to the adoption of more
sophisticated classification tools. These effects highlight
the need to characterize and calibrate LIF
instrumentation.

LIF spectrometers are now commercially available
that offer greater spectral resolution than previous
generations of instruments. There is still utility in 1-3
channel instruments to determine bulk PBAP concen-
trations, with some level of broad sub-classification
possible when data are treated and caveated appropri-
ately. Modification of the excitation and detection
bands to increase sensitivity to pollen, or other spe-
cific PBAP of interest, may be beneficial for monitor-
ing purposes (e.g., changing WIBS FL3 to match the
chlorophyll peak emission) (O’Connor et al. 2014).
Moving from fluorescent intensity to photon counting
may also be beneficial and should be explored if feas-
ible (Sivaprakasam et al. 2004). For instruments with
higher-emission spectral resolution, normalizing to
maximum spectral intensity is one way to cope with
differences between instruments, although this is not a
suitable long-term solution.

Many RT LIF spectrometers have very low flow
rates (e.g., 0.2 L min�1) causing poor counting statis-
tics when airborne PBAP concentrations are low
(<10’s L�1); thus, averaging intervals should be
chosen, in part, with respect to particle concentration.
In some newer instruments, the conversion from
light-scattering signal to calculated particle size is hid-
den within proprietary software, which can lead to
sizing errors or drifting offsets. In all cases, particle

sizing should periodically be calibrated and moni-
tored, e.g., using NIST-traceable PSL particles.
Various instruments provide proxies for particle
shape, but the quality of these measurements varies
between instrument types and their application should
involve careful calibration with known particle shapes
(Gabey et al. 2010; Healy et al. 2012; K€onemann et al.
2019; Savage et al. 2017).

2.1.7.2. Data interpretation. Physical properties of
particles influence their classification and data inter-
pretation. Emitted fluorescence intensity generally
varies by the second to third power of diameter,
depending on the absorptivity, excitation and emission
properties, and composition of the particle (Hill et al.
2001; Hill et al. 2015; Sivaprakasam et al. 2011). The
dependence of the fluorescence versus size relation-
ship on LIF penetration depth makes normalizing
fluorescence measurements by particle size impossible
without additional information about each particle.
When weakly fluorescent particles are excluded from
further analysis, the strategy for threshold determin-
ation also influences particle categorization. For
example, by increasing the threshold of discrimination
a particle may no longer be considered fluorescent in
one channel, while retaining fluorescent status in
another, thus changing categorization. These factors
combine to make the comparison of individual par-
ticle types (i.e., Perring et al. 2015) complex, unless
using instruments calibrated to a common fluores-
cence standard, or with matching gain, limiting to a
narrow and matching particle size, and using the
same threshold strategy (Savage et al. 2017).

Particles that saturate the detector pose an unre-
solved issue. In early efforts, saturating particles were
removed from cluster analysis-classification schemes
to avoid conflating particle types. Large and brightly
fluorescent PBAP (i.e., pollen), however, frequently
saturates one or more channels; thus, their removal
may result in misrepresentation of aerosol compos-
ition. Weakly fluorescing PBAPs can also challenge
quantitative estimation of particle number (Healy
et al. 2014; Huffman et al. 2012), and the problem is
exacerbated when higher-fluorescence thresholds are
used. The goal of a particular analysis will largely
define the strategy.

Non-biological interferents pose a significant on-
going challenge. Many particles can be detected as
fluorescent, including some mineral dust, aged organic
aerosol, soot, or textile fibers (Gabey et al. 2013; Hill,
Mayo, and Chang 2009; Huffman, Treutlein, and
P€oschl 2010; Savage and Huffman 2018; Savage et al.

10 J. A. HUFFMAN ET AL.



2017; Sivaprakasam et al. 2011; Toprak and Schnaiter
2013). Care should be taken when sampling in loca-
tions with potentially high concentrations of interfer-
ents, especially in urban or built (i.e., indoor)
environments. Laboratory characterization of LIF
instrument response to PBAP has been foundational,
but differences between lab-grown or generated par-
ticles and ambient PBAP are likely significant. These
differences may affect interpretation, especially when
supervised algorithms trained on lab data are utilized.
Lastly, a strong association has been made between
fluorescence in certain detection bands and viability
of bacterial or fungal aerosol. This association can be
useful in controlled laboratory environments, but is
almost totally invalid when analyzing complex mix-
tures of ambient aerosols.

An additional challenge with some emerging LIF
instruments is that they limit the complexity of raw
data output to streamline data analysis or for propri-
etary reasons. These practices may improve consist-
ency in data analysis, but may also introduce errors
by hindering the double-checking of analytical
assumptions.

2.2. Elastic scattering, microscopy,
and holography

Each of the sensors discussed specifically below
includes the capability to sample, analyze, and report
aerosol data automatically and in RT, which means
that data are made available with a period of seconds
to several hours after samples are taken. For all sen-
sors discussed, the focus is primarily on allergenic
pollen detection.

2.2.1. BAA500
The BAA500 (Hund-Wetzlar, Wetzlar, Germany) is
currently used in the ePIN pollen monitoring network
established in Bavaria, Germany (Oteros et al. 2015).
The device uses a method inspired by the workflow of
human operators carrying out manual pollen monitor-
ing. Samples are collected and fed through a micro-
scope system, which measures images at eight focal
positions (z-scan) for identification of a wide range of
pollen taxa. Imaging and analysis are performed while
the next sample is collected, which means that the
data are made available several hours after the sample
is taken. The scope of the device is mostly restricted
to pollen (>10mm) and some spores. Smaller particles
are excluded by the sampling mechanism to increase
the performance of image analysis by keeping slides
clean. Training of the recognition algorithms can be

performed using live monitoring data by labeling
events manually. The strong focus on pollen and the
use of microscopy builds on the knowledge base and
quality standards traditionally applied by aerobiolo-
gists (Gal�an et al. 2014).

2.2.2. Poleno
Similar to other LIF devices, the recently commercial-
ized Poleno (Swisens AG, Horw, Switzerland) utilizes
fluorescence (LED excitation at 280 and 365 nm), but
is unique due to the use of digital holography to
reconstruct in-focus images of airborne particles. The
quality of the holographic images makes it possible
for the trained human eye to manually distinguish,
e.g., between pollen and non-pollen particles, as well
as to recognize certain pollen taxa. This provides the
possibility for external verification of analyses applied
to the raw data (either LIF measurements, images, or
both). The availability of raw images also means that
more classically trained aerobiologists are not required
to completely change their analysis paradigm.
Algorithms can be trained on-line by manually label-
ing events; however, the advantages of on-the-fly
training are somewhat in contradiction with the need
for reproducibility and traceability, which are difficult
to attain with evolving algorithms. Convolutional
neural networks have successfully been applied to
images from a Poleno, with up to ten different pollen
taxa identified (Sauvageat et al. 2019). The focus of
the first tests was pollen, and the ability of the Poleno
to measure other (bio)-aerosols remains to be tested
as does the extension of classification algorithms to
identify further pollen species. Data from the Poleno
are analyzed automatically and reported to the user
within seconds.

2.2.3. KH-3000
The commercially available KH-3000 (Yamatronics;
Japan) measures the forward- and side-scattering sig-
nals from a 780-nm laser beam, and data are reported
immediately (Kawashima et al. 2007). The device has
been used since 2002 across the Japanese national
automatic pollen monitoring and forecasting network
“Hanakosan,” the first of its kind. The requirements
for pollen monitoring in Japan, however, are some-
what unique: The dominant allergenic species
(Cryptomeria japonica, Japanese Cedar) can easily be
discriminated from other pollen taxa due to the speci-
ficity of winter season emission and the exceptionally
large size and smooth surface of the pollen grains
(Beug 2004). Although attempts were made to extend
the scope of the KH-3000 (Kawashima et al. 2007;
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Kawashima et al. 2017), the potential is limited. The
robustness and the low cost of the device make it,
however, a good candidate to complement the spatial
resolution of a network backbone consisting of more
precise (but more expensive) devices. This is import-
ant, since a relatively dense network of real-time pol-
len monitoring would open up an avenue for data
assimilation in numerical forecast models (Sofiev et al.
2006; Vogel, Pauling, and Vogel 2008), justifying the
existence and development of cheaper simple
instruments.

2.2.4. PollenSense
A newly available sensor from the company
PollenSenseTM (https://pollensense.com) detects and
identifies pollen automatically through a proprietary
imaging and deconvolution process after collecting
particles onto a substrate, and the sensor provides
information within one half to several hours of meas-
urement (Lucas et al. 2018). The manufacturer Web
site claims that a fraction of ambient pollen species
can be identified and that the sensors can be pur-
chased or leased for home or community use.
Nothing has been published in peer-reviewed litera-
ture at this time.

2.2.5. Portable sensors
New embodiments of relatively inexpensive, portable
sensors for RT bioaerosol detection based on optical
scattering or emission are in constant development
(Ballard, Brown, and Ozcan 2018; Huffman and
Huffman 2019; Huffman, Swanson, and Huffman
2016; K€uhnemund et al. 2017; Navruz et al. 2013;
Tsuruzoe and Hara 2015; Wei et al. 2014; Wu,
Shiledar, et al. 2017; Wu et al. 2018), enabled, e.g., by
improvements in additive manufacturing (i.e., 3D
printing), battery technology, and optical source cost
and quality (i.e., more powerful LEDs at reduced
cost). In some cases, these emerging sensors are not
yet paired with automatic collection systems, but
together are sure to provide significant improvements
to PBAP detection capabilities in at least the next dec-
ade as products become commercially available.

2.3. Raman spectroscopy

Techniques for measuring Raman spectra (RS) of
atmospheric aerosol particles and the use of RS for
particle characterization continue to be developed
(Deboudt et al. 2010; Hiranuma et al. 2011; Ivleva
et al. 2007; Ivleva, Niessner, and Panne 2005; Rosasco,
Etz, and Cassatt 1975; Rosen and Novakov 1977), and

include high-throughput techniques and automated
analysis methods (Craig, Bondy, and Ault 2017;
Doughty and Hill 2017). Peaks in RS indicate the
vibrational frequency modes of molecules. The num-
ber of particles that can be measured in a given time
period using existing RT instruments applying Raman
spectroscopy is far smaller than can be measured
using fluorescence or mass spectrometry, because the
intensity of RS of typical atmospheric particles is weak
and so long integration times are necessary (e.g., sec-
onds to minutes for a 1-mm particle). Thus, particles
must either be trapped in air electrodynamically
(Vehring and Schweiger 1998) or optically (Thurn
and Kiefer 1984; Wang et al. 2015), or collected onto
a substrate and then analyzed (R€osch et al. 2006).
Techniques such as surface-enhanced Raman spectros-
copy (SERS) that increase Raman signal by orders of
magnitude (for molecules within nanometers of SERS-
active substrates or nanoparticles) have potential to
enable real-time measurement (Craig, Bondy, and
Ault 2015; Sivaprakasam, Hart, and Eversole 2017).
The information content of RS is far larger than that
of fluorescence spectra. For example, an ensemble of
RS can indicate hundreds of different vibrational fre-
quencies. The assignment of a RS to a material such
as a mineral or mineral salt can be unambiguous
(Nyquist, Putzig, and Leugers 1997). RS has also been
shown effective in identifying biological particles. For
example, in tests with clean spores and vegetative cells
of Bacillus cereus, B. anthracis Sterne and B. thurin-
giensis, RS were assigned correctly to species with
greater than 96% probability (Ronningen et al. 2014).

The only commercially available instrument
designed for identification of specific types of infec-
tious aerosols is the automated aerosol Raman spec-
trometer termed the Rapid Enumerative
Bioidentification System (REBS), developed by Battelle
(Columbus, Ohio). Its Raman spectrometer and data
analysis techniques for characterizing bacteria and
bacterial spores have been described by Ronningen
et al. (2014). The REBS was used to measure atmos-
pheric aerosol in 15-min intervals over a 7-h period,
as reported by Doughty and Hill (2017). Aerosol par-
ticles are collected from air automatically onto a tape,
and RS are measured using excitation at 643 nm. The
instrument collects particles while simultaneously
measuring RS of particles collected in the preceding
period. The laser beam is focused to a line on the
tape. The resolution of the line-scanning imaging
spectrometer (dispersion-mated with a CCD detector)
allows �40 RS to be acquired simultaneously (each
corresponding to a position along the beam line in
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approximately 1mm steps). The laser line is then
stepped, e.g., every 2mm across the sample to get a
subsampling of deposited particles. If three replicate
RS are measured for each pixel interrogated, typically
the three-replicate RS of 100,000 pixels can be meas-
ured in a day of continuous instrument operation. To
reduce the chance of particles overlapping on the
tape, the REBS is run so that typically 5,000 to 25,000
RS measured per day exhibit intensities above a given
threshold. In urban/suburban areas, near roads, or
downwind from combustion sources, the fraction of
RS dominated by the D and G peaks of black carbon
(BC) or combustion soot is well over 50%. The large
number of BC particles in many outdoor air samples
may partially account for the high fraction of RS that
were indicated, e.g., by Doughty and Hill (2017) to be
BC, but spectral properties of the ambient particles
are also likely to play a role. The differential Raman
cross sections (DRSL) of diesel soot, for example, are
hundreds of times larger than those of benzene or
toluene (Le, Lefumeux, and Pino 2017) and even
larger than the DRLS of most non-aromatic materials.
The REBS has been shown to be able to measure RS
from particles as small as 300-nm polystyrene spheres
(unpublished data, authors Doughty and Hill), with
aromatic rings similar to benzene or toluene. These
facts suggest that BC particles with mass equivalent
diameters smaller than, e.g., 100 nm could be detect-
able and thus could contribute to the large numbers
of RS observed in atmospheric samples. In contrast to
this, the large majority of other particle types have
smaller Raman cross sections and minimum detect-
able sizes that are a few to many times larger.

Most intact pollen grains and many fungal spores
are too large to be collected by the REBS in its stand-
ard operating mode, thus challenging application of
the instrument for ambient bioaerosol detection. The
particle collection system could be modified to collect
and measure larger particles, e.g., by changing the
microscope objective, but that would reduce its cap-
ability in measuring smaller particles.

Fluorescence of bioaerosols, minerals, and other
particles can overwhelm relatively weak Raman peaks.
In measurements made using an REBS, a significant
fraction of RS were so dominated by fluorescence that
no Raman peaks were apparent (Doughty and Hill
2017). Many of these fluorescent particles are likely to
be bioaerosol. Photo-bleaching can reduce the fluores-
cence so that the Raman peaks appear more clearly,
but the time required for it reduces the sample rate.
Alternately, longer wavelength illumination could be
used, but that also requires longer illumination times.

The combination of fluorescence and Raman signals
present in large fraction of measured RS may yield
more information than can be obtained from RS
alone. At kex 643 nm, fluorescence is dominated by
different fluorophores (e.g., chlorophylls) than those
observed at wavelengths commonly used in
LIF detection.

The number of spectra measurable in a short time
period by RT Raman instruments is also limited
because some particles can be charred or physically
modified by higher laser intensities (e.g., >

1mW mm2) (e.g., Blaha, Rosasco, and Etz 1978; Lai
et al. 2016). Thus, there is a complex tradeoff between
laser intensity (scales positively with potential for
burning), laser wavelength (Raman intensity scales as
1/k4, but also fluorescence is generally stronger at
shorter excitation wavelengths), and imaging/photo-
bleaching time versus sample rate. In RT systems, the
choice is more difficult because it must be made a pri-
ori or automatically at the time of measurement.
Good databases exist for RS of minerals (Lafuente
et al. 2015), many biological materials (De Gelder
et al. 2007), and of a few microorganisms (Guedes
et al. 2014), but there is a great need for more com-
plete databases of RS of atmospheric bioaerosols.
More study is needed of RS of mixed and aged par-
ticles, as well as of differences in ambient and labora-
tory-generated bioparticles.

2.4. Mass spectrometry

2.4.1. Online mass spectrometry techniques
Single particle mass spectrometry (SPMS) refers to a
collection of techniques that ablate and ionize single
aerosol particles with a pulsed laser and analyze their
chemistry with time-of-flight mass spectrometry.
Instruments tend to be custom-built, with examples
including ATOFMS (Gard et al. 1997; Pratt et al.
2009b), SPLAT (Zelenyuk and Imre 2005; Zelenyuk
et al. 2015), ALABAMA (Brands et al. 2011), and
PALMS (Cziczo et al. 2006; Thomson, Schein, and
Murphy 2000). Some have been commercialized, e.g.,
ATOFMS (TSI), Livermore-SPAMS (Livermore
Instruments, Oakland, California) (Frank et al. 2011;
Morrical, Balaxi, and Fergenson 2015), Hexin-SPAMS
(Hexin Instrument Co, Ltd., Guangzhou, China) (Li
et al. 2011; Zhang et al. 2012), and LAAPTOF
(AeroMegt GmbH, Solingen, Germany) (Gemayel
et al. 2016; Shen et al. 2018). The details of instru-
ment construction, including the wavelength of the
ionization laser, vary across different instruments,
making direct spectral comparisons challenging.
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Among the advantages of SPMS is its ability to
detect nearly all atmospherically relevant aerosol types,
including soot, dust, and sea salt. One disadvantage,
however, is the challenging interpretation of SPMS
mass spectra, which are semi-quantitative and strongly
influenced by matrix effects (Murphy 2007).
Bioaerosol detection presents an attractive target for
SPMS, but it can be complicated by these difficulties.

The thermal desorption aerosol mass spectrometer
technique, most famous through the series of
Aerodyne (Billerica, MA, USA) Aerosol Mass
Spectrometer (AMS) instruments (Canagaratna et al.
2007; DeCarlo et al. 2006; Drewnick et al. 2005; Jayne
et al. 2000), has been used for RT detection of bioaer-
osol, but to a lesser extent than SPMS. The main rea-
sons were the restriction to submicron aerosol
particles in the first generations of AMS instruments
due to the particle size cutoff of the aerodynamic lens
(Liu et al. 2007) as well as the uncertain degree of
evaporation of PBAP components at the operational
AMS vaporizer temperature of about 600–700 �C.

By most online mass spectrometry techniques,
aerosol can be collected from the atmosphere and
analyzed in the instrument automatically and continu-
ously. Interpretation of the complex mass spectral
data generally requires human interaction, though first
approximation determinations can be applied using
interpretation algorithms operated in RT.

2.4.2 Bioaerosol detection by online mass
spectrometry

The interest in bioaerosol detection in the SPMS com-
munity was precipitated by the importance of bioaero-
sols for ice formation in clouds and with respect to
national security concerns. While the earliest reports
of single particle bioaerosol mass spectra come from
laboratory standards (Fergenson et al. 2004; Gieray
et al. 1997), SPMS has been increasingly applied to
the detection of bioaerosols via aircraft or at high
alpine research stations, i.e., to measure the chemical
composition of ice residuals and aerosols both in and
outside of clouds (Creamean et al. 2013; Pratt et al.
2009a; Schmidt et al. 2017). SPMS has also been
applied for the detection of agents of biological war-
fare and for public health monitoring (Czerwieniec
et al. 2005; Frank et al. 2011; Russell et al. 2004; Steele
et al. 2006; Tobias et al. 2005). The system deployed
by Steele et al. (2006), in particular, paired SPMS with
LIF detection of PBAP.

Traditionally, the prominence of negative phos-
phate ions (PO2

–, PO3
–, sometimes PO4

–) in a single-
particle mass spectrum is used to identify bioaerosols.

Often, the phosphate markers are combined with
organic nitrogen fragments (CN– and CNO–). This
was found to match laboratory signatures of bioaero-
sols well (Fergenson et al. 2004; Pratt et al. 2009a;
Schmidt et al. 2017; Sultana, Al-Mashat, and Prather
2017; Suski et al. 2018; Zawadowicz et al. 2017).
However, there is also recent evidence that misclassifi-
cations with phosphate-rich dust and ash are possible,
and a marker ratio-based approach combined with
machine learning can improve bioaerosol identifica-
tion and allow uncertainty analysis (Zawadowicz et al.
2017; Zawadowicz et al., 2019). Recent work using
this method was found to compare well with the
WIBS sensor in one deployment at a mountaintop
research station (Zawadowicz et al. 2019).

The attempts to detect and quantify bioaerosol with
the thermal desorption technique are mainly based on
nitrogen-containing marker ions, inferred from
laboratory studies using reference compounds such as
amino acids. The technique was used to estimate the
PBAP fraction of submicron organic aerosol mass to
be �20% in both the Amazonian rainforest
(Schneider et al. 2011) and a sub-Antarctic marine
environment (Schmale et al. 2013). Wolf et al. (2015)
used a new aerodynamic lens transmitting up to 3 mm
(Peck et al. 2016), thereby enabling the AMS to make
PM2.5 measurements. To obtain marker ions for bio-
logical material, they used an aerosolized suspension
of Pseudomonas bacteria. The identified marker ions
were also characterized by nitrogen, of the general
form CxHyN1

þ. Wolf et al. (2017) used positive matrix
factorization (PMF) to estimate bacteria-like compo-
nents in measured ambient air to comprise �2% of
the PM2.5 mass.

2.4.3. Perspectives on bioaerosol mass spectrometry
Outstanding issues in detection of bioaerosols using
online mass spectrometry include the need for direct
comparisons of bioaerosol ion markers and differences
in detection between existing mass spectrometric tech-
niques, but also between mass spectrometers and
other bioaerosol-specific techniques. Such comparison
efforts would ideally include both known bioaerosol
populations in a controlled laboratory setting and
comparisons between co-located instruments in the
field. For the laser ablation SPMS method, differences
in ionization laser wavelengths can produce large
changes in the resulting single-particle mass spectra,
and therefore, there is no guarantee that one combin-
ation of spectral markers applies equally well to all
existing SPMS instruments.
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The selection of laboratory standards to compare
against ambient mass spectra is of critical importance,
as laboratory-generated standards do not reflect the
complexity of real-world aerosol. This especially
applies to complex particle matrices, such as sea salt
aerosol with fragments of marine bioaerosol (Sultana,
Al-Mashat, and Prather 2017) and soil-derived aero-
sol. Additionally, Wolf et al. (2015) and Suski et al.
(2018) recently showed difficulties in separating
laboratory bacteria standards from their culturing
medium, which changed the properties of sampled
aerosols. Laboratory reference data are partly missing
for the AMS technique, e.g., pollen, viruses, fungal
spores. Reference mass spectra of laboratory-generated
biological aerosol particles need to be recorded and
published. Ideally, this should be conducted in parallel
with AMS and SPMS instruments, such that a direct
comparison of marker ions is possible.

It is important to consider the operational defin-
ition of bioaerosol and how it compares with other
detection techniques. The exact molecular origin of
the commonly used phosphate spectral markers (for
SPMS) is unclear, but they are likely to be connected
to phospholipids and nucleic acids in cells. Nitrogen-
containing marker ions may originate from nucleic
acids, but are very likely not specific to nucleic acids.
PBAPs that lack these components and are instead
composed of mostly carbohydrates (e.g., cellulose) will
not be classified as bioaerosol with current SPMS
detection schemes. Additionally, some carbohydrates
(especially levoglucosan, which is readily detected by
the AMS) also originate from biomass burning, such
that separation between biomass burning aerosol and
PBAPs can be difficult.

For both mass spectrometric techniques, but espe-
cially for the AMS, the particle size range needs to be
extended to larger particles. An upper size limit of
3 mm is in the middle of the size range frequently
reported for fluorescent biological aerosol particles
(e.g., Huffman, Treutlein, and P€oschl 2010); thus, an
extension to even larger particle sizes (up to 10 mm
and beyond) should be pursued. The AMS technique
additionally suffers from the uncertain evaporation of
bioaerosol particles. A new “capture” vaporizer was
recently introduced (Hu et al. 2018) which in combin-
ation with an extended size range may lead to better
PBAP results; however, this needs to be verified.
Furthermore, for both techniques, the detection effi-
ciency needs to be determined so that the number
concentration of atmospheric biological particles can
reliably be calculated.

2.5. Breakdown spectroscopy

Laser-induced breakdown spectroscopy (LIBS) is a
laser ablation technique, by which a high-energy laser
beam is focused to create an microplasma to induce
breakdown of aerosol particle material. The electronic
emission from the electronic excited states provides
elemental composition of the particle, which can be
characteristic of individual material types. LIBS cap-
ability provides an orthogonal measurement technique
that is proven to improve the false alarm rate of bio-
aerosol sensors based on fluorescence; however, it
does not offer enough discrimination as a standalone
technique due to the abundance of detected elements
in the environment and the high variability in signal
strength due to non-uniformity of the plasma formed
(Hybl et al. 2006; Martin, Cheng, and Martin 1999;
Saari et al. 2016). A similar technique of spark-
induced breakdown spectroscopy (SIBSb; not to be
confused with the fluorescence technique with match-
ing acronym) determines elemental composition, but
using energy input from an electrically sparked
plasma, which offers a cost-effective alternative to
LIBS (Tysk, D’angelo, & Herzog 2015). SIBSb has
been applied for non-RT bioaerosol analysis (Schmidt
and Bauer 2010). The breakdown spectroscopy process
can be implemented for RT analysis. Particle through-
put for this technique is less than ten particles per
second, however, due to the low repetition rate of the
plasma generation source and the plasma persistence
time. This results in inefficient sampling of the aerosol
population, adding to the short-comings of this tech-
nique. Neither LIBS nor SIBSb have been commercial-
ized for bioaerosol analysis; however, LIBS is
employed in the US DoD RAAD program (see
Section 2.1.2). Efforts to produce a predictable plasma
source could propel the technique toward more prac-
tical implementations and better discrimination. Due
to the commonality of the elements detected in the
environment, however, it is hard to envision LIBS or
SIBS gaining footage as a standalone technique.

2.6. Remote sensing

Stand-off detection systems are used to interrogate
atmospheric composition, e.g., for the purposes of
both environmental research, national security, and
agricultural monitoring and have been engineered for
both ground-based and airborne application (Buteau
et al. 2010; Christesen et al. 1994; Gelbwach and
Birnbaum 1973; Joshi et al. 2013; Richardson,
Aldridge, and Milstein 2008). Their advantages over
point detectors are principally due to the ability to
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scan wide areas, e.g., tens of kilometers, with high
spatial resolution (e.g., meters) in RT and with no
need to physically reach the target. Quantitative, spa-
tially resolved measurements of bioaerosol concentra-
tion and properties are predominantly provided by
active methods of Light Detection and Ranging
(LIDAR) (Buteau et al. 2008). LIDAR systems have
been used for monitoring PBAP of various types
(Brydegaard et al. 2009; Saito et al. 2018;
Sassen 2008).

LIF-LIDAR has been most successful for PBAP
detection, though several other techniques have been
successfully applied in parallel for improved discrim-
ination, e.g., longwave infrared differential scattering,
femtosecond filamentation, and depolarization ratio
LIDAR. The LIF-LIDAR technique utilizes powerful
UV lasers (up to tens of watts), usually at excitation
wavelengths either 266 or 355 nm (e.g., via pulsed
Nd:YAG laser) to photo-excite an atmospheric line of
sight and analyze the transient back-fluorescence spec-
tra at >10-ns resolution. The intrinsic challenge in
such stand-off detection is that the signal-to-noise
ratio (SNR) decreases with square of the distance and
exponentially with atmospheric attenuation. Similar to
single-particle LIF systems discussed above, increasing
spectral resolution of the LIDAR emission detector
improves spectral differentiation between biological
species in the air, but increasing the number of wave-
length channels (N) reduces SNR by �N. Choice of
fluorescence excitation and emission bands interro-
gated follows the same physical reasoning as discussed
above with respect to single-particle LIF instruments.
Contrary to single-particle instruments, however, the
sensing distance, e.g., of a LIDAR system requires the
user de facto to give up specificity of bioaerosol chem-
ical classification. Further, the process integrates signal
over many particles and thus cannot separate contri-
butions from individual aerosol types within the inter-
rogation volume of the LIDAR field of view. For this
reason, the primary use of such remote sensing sys-
tems is as means for warning about plumes of bio-
logical warfare agents.

Portable LIF-LIDARs have existed for more than a
decade; however, no LIF-LIDAR systems are commer-
cially available. Existing systems are generally used as
research instruments for atmospheric measurements,
with no standardized outputs. Stand-off detection of
PBAPs based on fluorescence properties is valuable,
but faces similar technical challenges to single-particle
LIF techniques, e.g., poor ability to differentiate
between aerosols due to broad fluorescence spectra.
Using LIDAR systems with multiple excitation

wavelengths and combining with other techniques
may improve the contributions that LIDAR systems
can provide.

2.7. Microfluidic techniques

Emerging microfluidic techniques offer promise for
near-RT, species-level identification of infectious or
toxic bioaerosols. Microfluidics techniques are based
on controlled manipulations of femtoliter to microliter
fluid volumes, often in a lab-on-a-chip environment.
Microfluidic devices aimed at bioaerosol detection
have recently been developed (Choi et al. 2017;
Novosselov et al. 2014), usually consisting of a col-
lector, delivering bioaerosols into microfluidic liquid
volumes, integrated with a biological assay. Aerosol is
collected via impaction into microdroplets, directing
aerosols into winding microchannels of a chip, or
depositing aerosols onto a small substrate for later
recovery (Foat et al. 2016; Han, An, and Mainelis
2010). After collection, a variety of assays may be
applied including ATP measurement, PCR, immuno-
assay, or genomic sequencing (Mairhofer, Roppert,
and Ertl 2009). Advantages of microfluidics platforms
for bioaerosol detection include sensitivity, adoption
of established microfluidic assays, low reagent con-
sumption, rapid assay kinetics, and enhanced aerosol
concentration ratio. Most studies have investigated
single-phase microfluidics, wherein aerosols are col-
lected into a single-phase aqueous collection liquid,
but recent research has introduced bioaerosol detec-
tion in a droplet microfluidic environment (Damit
2017). Droplet microfluidics involves the creation of
discrete aqueous microdroplets containing reagents
that are suspended in a carrier oil phase in the chip
(Garstecki et al. 2006; Shang, Cheng, and Zhao 2017).
This configuration can further accelerate assay reac-
tion kinetics, enable precise fluidic manipulations
(e.g., electrowetting), and may support single-par-
ticle assays.

Microfluidics-based bioaerosol detection remains in
its infancy, with several technical hurdles needing to
be overcome to facilitate robust detection. Paramount
among these are lack of maturity of such systems,
contamination, and miniaturization of supplementary
equipment (e.g., air sampling pump). Microfluidic
bioaerosol literature has focused primarily on aerosol
collector design, with minimal attention given to the
back-end assay. For the purposes of RT detection, it is
beneficial for future efforts to emphasize selection and
integration of a rapid assay, and to demonstrate the
entire detection workflow – from aerosol sampling to
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detection of a target organism. Subsequently, these
systems must undergo laboratory evaluation as well as
field testing to prove their real-world application.
Interfacing with advances in the broader field of
microfluidics, especially progress in droplet microflui-
dics, biochemical assays, and microelectromechanical
fluidic manipulations, could resolve limitations and
improve assay-based bioaerosol detector approaches.
No microfluidic systems for bioaerosol analysis are
commercially available.

2.8. Paired aqueous techniques

A number of historically offline analysis techniques
have been applied for RT bioaerosol detection and ana-
lysis, with relatively limited scope of application, and
currently no commercial availability of paired sampling
analysis, although the Autonomous Pathogen Detection
System (APDS) has been deployed by the U.S.
Department of Homeland Security as part of its
BioWatch program (Dzenitis and Makarewicz 2010;
Regan et al. 2008). In particular, collection of airborne
PM directly into liquid, e.g., via an impinger, particle-
into-liquid-sampler (e.g., wet cyclone), or Spot
SamplerTM aerosol particle collector (Aerosol Devices,
Fort Collins, Colorado), allows for coupling to RT
chemical and biological analyses (Cho et al. 2019;
Morris et al. 2014b; Pan et al. 2016, 2018; Park et al.
2014; Seshadri et al. 2009). These strategies require
post-processing of data and so do not provide complex
data about bioaerosol in RT.

One example of this is aqueous flow cytometry,
routinely used in many fields of biology and environ-
mental science, yet applied only infrequently to RT
bioaerosol analysis (Chen and Li 2007; Ho and Fisher
1993). Flow cytometry detects microorganisms or
other cellular material after attaching fluorescent
probes for more selective detection. Identification is
possible, e.g., after PCR amplification (Dzenitis and
Makarewicz 2010; Regan et al. 2008). Performing
these steps autonomously in RT has rarely been
achieved (i.e., APDS as an exception; Regan
et al. 2008).

Another hybrid example is pairing the type of sam-
plers mentioned above for aerosol collection with ion
chromatography separation and detection (Eiguren
Fernandez, Lewis, and Hering 2014; Sarda-Est�eve et al.
2015). This can provide detailed information about
chemical tracers in the sampled aerosol, e.g., mannitol
and arabitol as tracers of fungal material. The technique
requires constant monitoring of the flowing system and
is challenging to deploy for field investigations.

3. Broad summary and grand challenges

Recently increased commercial availability of instru-
ments for RT analysis of PBAPs has allowed a surge
of studies in a host of environments. Many of these
techniques utilize properties based on either chemical
(e.g., identification of molecule, functional groups, or
constituent elements; absorption and emission proper-
ties) or physical (e.g., elastic light scattering) principles
as a proxy for detecting PBAP classes. A challenge in
the application of these technologies is to carefully
understand the link between the response of a given
instrument and the PBAP of interest, including inter-
fering species or technical limitations that pose chal-
lenges to discrimination between types. The spectrum
of PBAP types can span orders of magnitude in phys-
ical size and includes large differences in chemical
composition, taxonomy, physiological state, natural
biological variability, and many other factors. As a
result, techniques should be well matched to questions
of interest, and users should take care to understand
the challenges associated with a set of measurements.
Listed below are grand challenges, pressing scientific
questions, and community needs with respect to RT
detection of bioaerosols.

3.1. Technical needs common across techniques

i. Standardization of PBAP operational definitions –
Classes may be as broad as PBAP versus non-
PBAP or as specific as genus and species.
Individual instruments are sensitive to only a
fraction of PBAP classes and differ in the specifi-
city that can be achieved. For some instrument
classes, detected aerosol may be defined in terms
of instrument response (i.e., fluorescent aerosol
as a proxy for some fraction of total PBAP),
which underscores standardization needs listed
below. Reports should explicitly clarify the classes
of PBAP implied for detection.

ii. Standardization of calibration and operation –
Adopting particle calibration standards (e.g., for
fluorescence and mass spectrometry) and devel-
oping standardized protocols for calibration,
instrument operation, and analysis are each
imperative to improve comparisons between both
similar and dissimilar instruments. The use of
central facilities that have access to microorgan-
ism growth, aerosolization, and safety equipment
could be helpful to compare instruments during
dedicated workshops by subjecting them to a
wide variety of ambient and lab-generated aero-
sols to validate instrument performance.
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iii. Standardization of reporting – Communities of
researchers are encouraged to develop and adopt
standardized analysis and reporting procedures to
better enable inter-comparison of results across all
instrument types, with special attention to explicit
reporting of key operational parameters (e.g., gain
settings) and data processing procedures, includ-
ing justification for use of any nonstandard meth-
ods. Similar to other emerging techniques, data
interpretation is evolving using, e.g., machine
learning analysis techniques (e.g., Vapnik 1998)
and through comparison to traditional bioaerosol
measurement methods. In particular, the raw data,
exact processing steps, and processing code should
be made available whenever possible.

iv. Standardization of analysis algorithm application
– Continued improvement in the types and rec-
ommended application of advanced analysis algo-
rithms (e.g., supervised classification, machine
learning, neural networks) is required. The rec-
ommendations with respect to fluorescence-based
instruments given above have broad application
to many technique classes.

3.2. Need for improved links between
technique outputs

There is a need for improved and affordable RT
instruments which measure particle types at suffi-
ciently high time resolution with a useful specificity
(in some cases to species level as needed for pathogen
detection) along with the numbers of particles in each
type. In many cases, RT technologies provide rich
quantitative information, e.g., estimated number con-
centrations of classes of particles at high-time reso-
lution, often with high-particle size resolution, and
sometimes on a single particle basis. The qualitative
information these RT techniques provide, e.g., detailed
identification of the particle type or source, however,
is often quite low. This is in contrast to many well-
developed offline techniques for PBAP detection that
provide great qualitative detail, even to the species or
strain level, but generally with far lower time reso-
lution or with significantly lower quantitative detail.
Recently developed metagenomics analyses, for
example, offer relatively rich detail on what types of
organisms (i.e., species or functional traits) are
involved without providing much information on how
many (i.e., concentration) of those particles or organ-
isms may be present (e.g., Frohlich-Nowoisky et al.
2014). The need to bridge the gap between primarily
quantitative techniques and primarily qualitative

techniques thus represents a grand challenge associ-
ated with the development and application of RT
PBAP sensing. In many cases, combination of techni-
ques (e.g., LIF with holography, breakdown spectros-
copy, or antibody-based sensing) helps to provide
both adequate counting and discrimination.

3.3. Need for PBAP database development

Open databases should be developed for the techni-
ques listed here, including microscopy, elastic scatter-
ing, Raman spectroscopy, fluorescence spectroscopy,
mass spectrometry, and LIBS. These should include as
many bioparticle and non-biological types as possible,
with organism growth, aerosolization, and analysis
conditions clearly reported. Input to these databases
should also include particles analyzed from ambient
air, with breadth of geography, latitude, ecosystem
type, season, and weather conditions. Database devel-
opment should also include the effects of atmospheric
aging and processing.

3.4. Need for improved pathogen detection

RT detection of plant, animal, and human pathogens
(both infectious and toxic) presents a significant tech-
nical challenge that has yet to be widely solved.
Infectious virus aerosols are generally too small to be
detected individually in the air by the techniques dis-
cussed. Development of instrumentation to detect viral
particles in RT thus represents a significant community
need. Infectious or toxic bacterial or fungal aerosols can
often be detected, but differentiating in RT with suffi-
cient taxonomic quality to identify as a potentially
harmful species or strain is considerably more compli-
cated. Detection techniques that pair multiple types of
analysis have shown increased success, but are expen-
sive and often not commercially available. One object-
ive in this area includes operation of sensors
continuously and affordably in locations such as hospi-
tals, public schools, and airports, with little operator
input. The identification probability must be very high
in most cases to be effective, i.e., before shutting down a
public area in case of an infectious aerosol outbreak.
Related techniques could be applied to human, agricul-
tural, and livestock applications.

3.5. Need for improved allergen-containing
particle detection

Development of techniques for autonomous detection
of pollen is more mature than for RT pathogen
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detection, but technical advances and improvement
in cost are still required. In contrast, the autonomous
detection of other allergenic or toxic PBAP classes
(e.g., fungal spores, endotoxin-containing particles,
pet dander, or fragments of pollen and spores) is not
well established. Development of instrumentation
toward detection of these particle classes in both
indoor and outdoor air is required. Consideration
should also be given to detection of both whole par-
ticles and ruptured particle fragments (i.e., sub-pollen
particles) that can penetrate deeper into respiratory
airways to exacerbate negative health responses (e.g.,
Miguel et al. 2006; Taylor and Jonsson 2004).

3.6. Need for improved cross-disciplinary
cooperation

A fundamental challenge associated with PBAP detec-
tion is the wide diversity of scientific objectives and
motivations across communities, as briefly summar-
ized in Section 1. Each community commonly
requires measurements of different PBAP types, with
varying quantitative and qualitative detail, and each
present unique technical challenges. An associated
challenge is that communities are frequently sepa-
rated by differences in society meetings and networks
of collaboration. Cross-disciplinary interaction is fur-
ther challenged by broad differences in funding sour-
ces. Some communities are supported to investigate
basic scientific questions and thus publish in rela-
tively openly available academic journals, whereas
other communities are funded by governmental agen-
cies tasked with protecting national security or by
organizations focused on profit maximization (see
Table 1), and so open sharing of results and experi-
ence can be limited by proprietary limitations or
national security regulations. Transformative
advancement in the development and application of
RT bioaerosol sensing will require additional multi-
disciplinary interaction; thus, the differences in
approach, motivation, and funding barriers across
communities will need to be overcome. �Santl-Temkiv
et al. (2019) discusses these issues in more detail.

3.7. Need for improved links between bioaerosol
processes and modeling efforts

Emission of all types of bioaerosols from terrestrial
surfaces is influenced, in a complex way, by bio-
logical, meteorological, and physical processes.
Relatively little is known about emissions and depos-
ition fluxes of most bioaerosol types, becauseTa
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techniques for measuring surface flux (e.g., by eddy
covariance) have only infrequently been successfully
applied to bioaerosol measurement. Instrument devel-
opment work is therefore needed to improve techni-
ques to enable direct flux measurements over various
land and water surfaces. Related to this is the need to
measure bioaerosol concentrations and properties in
the vertical dimension, rather than only at single alti-
tudes. Detailed measurement of these properties will
provide improved inputs to dispersion models of vari-
ous kinds (e.g., from allergen forecasting to global
transport and radiative climate effects). Continued
and increased communication between modeling and
measurement communities is encouraged so that
instrument development and monitoring efforts are
focused on the collection of datasets that can most
efficiently reduce model uncertainties.

3.8. Need for understanding the effects of
atmospheric aging on PBAP

In the ambient atmosphere, PBAPs experience photo-
chemical aging/oxidation as well as coating by low-
volatile organic and inorganic compounds (e.g.,
Franze et al. 2005; Huffman et al. 2012; Santarpia
et al. 2013). Residence time in the ambient atmos-
phere can also expose aerosols to UV flux, desiccation,
and multiple cycles of freeze-thaw or water activation
evaporation. These effects impact microorganism via-
bility and may influence detection properties across a
variety of techniques. The community would thus
benefit from improvements in the ability to directly
measure aerosol viability in order to improve under-
standing with respect to effects on public health, agri-
culture, and ecology. Laboratory experiments also
need to consider aging processes to verify that bio-
logical particles can be recognized after a realistic resi-
dence time in the atmosphere.

In summary, real-time sensing of bioaerosol has
progressed considerably in recent years, with a broad
range of techniques becoming established or under
development. The challenges outlined above, however,
highlight that that RT techniques are still far from
being applied as standardized, universal detection
schemes. In particular, techniques vary significantly in
the bioaerosol types and properties that can be
detected and to what level of taxonomic specificity
(Table 2). RT techniques can offer significant advan-
tages in terms of fast response, sensitivity, and lack of
sampler perturbation. These factors are advantageous
for many different communities with diverse motiva-
tions for measuring various types of bioaerosols.

Further development and refinement of RT techniques
will continue to open new opportunities in both rou-
tine monitoring and research.

Nomenclature

ALABAMA aircraft-based laser ablation aerosol mass
spectrometer

AMS aerosol mass spectrometer
ARL Army Research Laboratory
APDS Autonomous Pathogen Detection System
ATOFMS aerosol time-of-flight mass spectrometer
ATP adenosine triphosphate measurement
BAWS Biological-Agent Warning Sensor
CMOS complementary metal-oxide semiconductor
DMA differential mobility analyzer
DMT Droplet Measurement Technologies
EMBD Enhanced Maritime Biological Detection
FLAPS fluorescence aerodynamic particle sizer
HAC hierarchical agglomerative clustering
INA ice nucleation active
JBPDS Joint Biological Point Detection System
LAAPTOF laser ablation aerosol particle time-of-flight

mass spectrometer
LED light-emitting diode
LIBS laser-induced breakdown spectroscopy
LIDAR light detection and ranging
LIF laser- (or light)-induced fluorescence
LL MIT Lincoln Labs
MIT Massachusetts Institute of Technology
MS mass spectrometry
NRL Naval Research Laboratory
MBS multi-parameter bioaerosol sensor
NADH nicotinamide adenine dinucleotide
NIST National Institute of Standards

and Technology
PALMS particle analysis by laser mass spectrometry
PCR polymerase chain reaction
PBAP primary biological aerosol particle
PMF positive matrix factorization
PMT photomultiplier tube
PSL polystyrene latex sphere
RAAD Rapid Agent Aerosol Detector
REBS resource effective bioidentification system or

rapid enumerative bioidentification system
RS Raman spectra
RT real-time
RUV three-letter UV-APS terminal code to set the

UV pulse detector voltage
SERS surface-enhanced Raman spectroscopy
SIBS spectral intensity bioaerosol spectrometer
SIBSb spark-induced breakdown spectroscopy
SNR signal-to-noise ratio
SPLAT single-particle laser ablation time-of-flight

mass spectrometer
SPAMS single-particle aerosol mass spectrometry
SPMS single-particle mass spectrometry
SVP three-letter UV-APS terminal code to set the

PMT detector gain
UH University of Hertfordshire
UV-APS ultraviolet aerodynamic particle sizer
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WIBS wideband integrated bioaerosol spectrometer
YAG yttrium aluminum garnet
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